3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior

نویسندگان

  • Erica Lin
  • Yaning Li
  • Christine Ortiz
  • Mary C. Boyce
چکیده

Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, antitrapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress–strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth and fail catastrophically by tooth failure, whereas larger tip angles exhibit a shear failure of the interfaces. Therefore, larger tip angles and trapezoidal or triangular geometries promote graceful failure, and smaller tip angles and anti-trapezoidal geometries promote more brittle-like failure. This dependence is reminiscent of biological systems, which exhibit a range of failure behaviors with limited materials and varied geometry. Triangular geometries uniquely exhibit uniform stress distributions in its teeth and promote the greatest amplification of mechanical properties. In both the bonded and unbonded cases, the predictions from the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces

In nature, biological structures often exhibit complex geometries that serve a wide range of specific mechanical functions. One such example are the ammonites, a large group of extinct mollusks, which produced elaborate, fractal-like hierarchical suture interface patterns. This report experimentally explores the influence of hierarchical suture interface designs on mechanical behavior by taking...

متن کامل

Using Geometric Complexity to Enhance the Interfacial Strength of Heterogeneous Structures Fabricated in a Multi-Stage, Multi-Piece Molding Process

Interfaces in heterogeneous structures are typically engineered for optimal strength through the control of surface roughness and the choice of adhesives. Advances in manufacturing technologies are now making it possible to also tailor the geometries of interfaces from the nanoscale to the macroscale to create geometrically complex interfaces that exhibit enhanced performance characteristics. H...

متن کامل

A New Trust Model for B2C E-Commerce Based on 3D User Interfaces

Lack of trust is one of the key bottle necks in e-commerce development. Nowadays many advanced technologies are trying to address the trust issues in e-commerce. One among them suggests using suitable user interfaces. This paper investigates the functionality and capabilities of 3D graphical user interfaces in regard to trust building in the customers of next generation of B2C e-commerce websit...

متن کامل

Bio-inspired “jigsaw”-like interlocking sutures: Modeling, optimization, 3D printing and testing

Structural biological materials such as bone, teeth or mollusk shells draw their remarkable performance from a sophisticated interplay of architectures and weak interfaces. Pushed to the extreme, this concept leads to sutured materials, which contain thin lines with complex geometries. Sutured materials are prominent in nature, and have recently served as bioinspiration for toughened ceramics a...

متن کامل

Study of convergence confinement method curves considering pore-pressure effect

The design of underground spaces is mainly carried out using empirical, analytical, and numerical methods. The convergence confinement method (CCM) is an analytical technique that is widely utilized in analyzing the stability of underground spaces. However, the main challenge in the stability analysis is the selection of an accurate constitutive model for rock mass, and particularly, its post-f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014